A Neural Network Facial Expression Recognition System using Unsupervised Local Processing

نویسندگان

  • Leonardo Franco
  • Alessandro Treves
چکیده

A local unsupervised processing stage is inserted within a neural network constructed to recognize facial expressions. The stage is applied in order to reduce the dimensionality of the input data while preserving some topological structure. The receptive fields of the neurons in the first hidden layer self-organize according to a local energy function, taking into account the variance of the input pixels. There is just one synapse going out from every input pixel and these weights, connecting the first two layers, are trained with a hebbian algorithm. The structure of the network is completed with specialized modules, trained with backpropagation, that classify the data into the different expression categories. Thus, the neural net architecture includes 4 layers of neurons, that we train and test with images from the Yale Faces Database. We obtain a generalization rate of 84:5% on unseen faces, similar to the 83:2% rate obtained when using a similar system but implementing PCA processing at

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بهبود مدل تفکیک‌کننده منیفلدهای غیرخطی به‌منظور بازشناسی چهره با یک تصویر از هر فرد

Manifold learning is a dimension reduction method for extracting nonlinear structures of high-dimensional data. Many methods have been introduced for this purpose. Most of these methods usually extract a global manifold for data. However, in many real-world problems, there is not only one global manifold, but also additional information about the objects is shared by a large number of manifolds...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Facial Expression Recognition Based on Anatomical Structure of Human Face

Automatic analysis of human facial expressions is one of the challenging problems in machine vision systems. It has many applications in human-computer interactions such as, social signal processing, social robots, deceit detection, interactive video and behavior monitoring. In this paper, we develop a new method for automatic facial expression recognition based on facial muscle anatomy and hum...

متن کامل

Facial Expression Recognition Using Sparse Representation

Facial expression recognition is an interesting and challenging subject in signal processing and artificial intelligence. In this paper, a new method of facial expression recognition based on the sparse representation classifier (SRC) is presented. Two typical appearance facial features, i.e., local binary patterns (LBP) and Gabor wavelets representations are extracted to evaluate the performan...

متن کامل

Neural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten

Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001